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Dynamical diagnostics for the glass transition in 
soft-sphere alloys 

J N ROUX, J L Barrat and J-P Hansen 
Laboratoire de Physique, Unit6 de Recherche Associie 1325 du CNRS, Ecole Normale 
SupCrieure de Lyon, 69364 Lyon Cedex 07, France 

Received 10 April 1989 

Abstract. The structural slowing down in a binary alloy of soft spheres near the fluid-glass 
transition has been investigated by extensive molecular dynamics simulations. An attempt 
is made to characterise the transition on the basis of r- and k-space representations of the 
incoherent and coherent parts of the density autocorrelation functions. A careful analysis of 
the Van Hove functions allows us to put forward two novel diagnostics of the underlying 
‘ideal’ glass transition, which yield the same value of the critical glass transition temperature. 
The latter appears to be independent of the mass ratio of the two species in the mixture. The 
damping of the longitudinal sound mode at the longest accessible wavelength appears to be 
surprisingly independent of temperature, while the damping of the corresponding transverse 
sound mode decreases significantly as the temperature is lowered 

1. Introduction 

Several recent inelastic neutron scattering measurements of the density fluctuation 
spectrum in supercooled ionic [l, 21 or polymeric [3,4] liquids show evidence of the 
critical behaviour predicted by mode-coupling theories of the dynamical liquid-glass 
transition [5-131. The sharp transition from ergodic to non-ergodic behaviour of the 
density autocorrelation function (‘structural arrest’) predicted by the simplest version 
of mode-coupling theory (the so-called ‘ideal’ glass transition) [5,6] has also been 
observed in molecular dynamics (MD) simulations of a supercooled Lennard-Jones 
liquid [14]. The obvious diagnostics signalling such an ‘ideal’ glass transition are the 
discontinuous appearance of strictly non-decaying Fourier components of the density 
autocorrelation function and the vanishing of the self-diffusion constant. However the 
‘ideal’ glass transition is smeared by activated processes, which lead to residual diffusion 
of atoms in the glassy state and restore ergodicity on a sufficiently long timescale. This 
behaviour may be accounted for by an improved version of the original mode-coupling 
theory, which allows for coupling to current fluctuations [12,13]. Evidence for the 
importance of activated processes is contained in recent MD simulations of simple binary 
soft-sphere alloys [15, 161. 

Discarding the latter processes, the most striking prediction of the mode-coupling 
analysis is the existence of two clearly distinct regimes of low-frequency dynamics, 
which may be associated with CY (or primary) and /3 (or secondary) relaxation, and are 
characterised by scaling laws with non-universal exponents. The two dynamic regimes 
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and their scaling behaviour are clearly evident in the spectra of the density correlation 
function of the ionic glass former Ca0,4K0,6(N03)1,4 measured by a combination of spin 
echo and time-of-flight neutron scattering experiments, which cover a time interval of 
over four decades (from to over lo-’ s) [ 1,2].  While MD simulations carried out 
on simple model systems typically cover comparable time spans, the insufficient sampling 
of phase space, associated with the dramatic slowing down of structural rearrangements, 
leads to poor statistics on the computed coherent and incoherent density autocorrelation 
functions. Consequently it appears a priori difficult to extract quantitative information 
on the subtle dynamical behaviour near the glass transition from MD simulations. How- 
ever, MD has the advantage of yielding information on a variety of correlation functions, 
which are not accessible to radiation scattering techniques. In particular, coherent 
and incoherent density fluctuations are readily separated, and real-space correlation 
functions are as easily computed as their k-space counterparts. 

In this paper we take advantage of this flexibility to explore density correlations in 
real space (i.e. the Van Hove functions) together with their spatial Fourier transforms 
(the so-called intermediate scattering functions) in an attempt to develop alternative 
diagnostics of the ideal glass transition and of the influence of activated processes. In 
the second part of the paper we examine the propagation of long-wavelength longitudinal 
and transverse sound modes in the vicinity of the glass transition. The main problem at 
issue here is how the damping of sound waves evolves as the temperature is lowered 
from the liquid into the glass phase, which is characterised by extremely large values of 
the viscosity. All simulations were carried out on a simple binary soft-sphere model to 
be defined in the next section. 

2. Model and numerical procedures 

The binary model alloy that has been simulated is identical to that used in some earlier 
MD work [15-191. The binary soft-sphere mixture contains N I  atoms of mass ml  and 
diameter a1 and N 2  atoms of mass m2 and diameter a2 in a volume V. These interact via 
the purely repulsive inverse-12 pair potentials: 

where 1 S a, /3 6 2 are species indices and the diameters are taken to be additive, i.e. 
o , ~  = (a ,  + ap)/2. The advantages of considering this model for an investigation of 
the glass transition have been discussed at length elsewhere [17]. Briefly speaking, 
nucleation of a crystal is easily bypassed in binary systems, whereas the behaviour of the 
corresponding one-component system is very sensitive to the quenching rate [20]. 
Crystallisation of an undercooled binary liquid would require a phase separation of the 
two species, which are not miscible in the crystalline solid above some critical ratio of 
the diameters (a2/a1 1.15) [21]. The corresponding inter-diffusion process is 
extremely slow near the glass transition, thus preventing the formation of the inhomo- 
geneity required in the nucleation process. Thus the very long runs required for a study 
of the slowing down of structural relaxation can be carried out safely, whereas the 
supercooled one-component fluid always exhibits a tendency towards spontaneous 
nucleation over sufficiently long time intervals. 

On the other hand the choice of a soft-sphere mixture, rather than a more ‘realistic’ 
model like e.g. a binary Lennard-Jones mixture [22], is dictated by three different 
considerations. First, the scaling properties of inverse-power potentials imply a 
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reduction of the independent thermodynamic variables for the mixture from three to 
two. Secondly, the properties of the one-component version of the model are well 
documented [23-251. Thirdly, the absence of attractive forces between atoms allows one 
to focus on steric (excluded-volume) effects near the glass transition. 

Let x ,  = N,/N (with N = N1 + N,) denote the number concentrations of the two 
species (xl + x 2  = 1). According to conformalsolution theory, the concentration-depen- 
dent diameter of an ‘effective’ one-component system would be [17] 

0; = x:u: + 2x1x2u:2 + x;.;. (2) 
A convenient choice of independent state variables is then the pair consisting of x1 and 
the effective coupling constant 

(3) * -114 r = P,*(T ) 
where p,* = Nal/V denotes the effective reduced density and T* = kgT/e  denotes the 
reduced temperature. Note that for fixed x l ,  a given value of the coupling constant r 
can be achieved either by cooling the mixture at constant density or by compressing it 
at constant temperature. As long as the system remains in thermodynamic equilibrium, 
the final state (xl, r) is independent of the route followed, but this is not necessarily true 
when the final state corresponds to a metastable glassy state. It may be noted at this 
stage that, within the mode-coupling theories [5-131, the quantities that characterise the 
glass transition depend only on the usual thermodynamic variables of equilibrium states. 

The microscopic timescale is measured in units of z = (ml c$/E) ‘ I2,  which turns out 
to be of the order of the inverse of the Einstein frequencies QE, associated with the two 
species [17]. The simulations reported in this paper were carried out for a size ratio 
u2/u1 = 1.2, which is more ‘realistic’ than the larger ratio of 1.4 used in some earlier 
work [15-171 if metallic alloys are to be modelled. Most calculations were carried out 
for a mass ratio mz/ml = 2, but some exploratory runs were made with m2/m1 = 10, to 
check the influence of the mass ratio on the glass transition. The latter would of course 
be independent of the mass ratio within classical statistical mechanics, if it were a genuine 
equilibrium thermodynamic phase transition. All results reported here are for equimolar 
mixtures (xl = x 2  = h). 

Based on earlier simulations for the one-component version of the model [XI, and 
for mixtures with the same [18] or different [15-171 size ratios, we expect the glass 
transition to take place around r -- 1.5. The one-component soft-sphere fluid freezes at 
r 5 1.15 [24,25], but by analogy with the phase diagram of binary hard-sphere mixtures 
with a similar ratio uz/ul, the present soft-sphere fluid-solid coexistence curve should 
exhibit a eutectic at a higher value of r, for a relatively low concentration of the larger 
species ( x ,  = 0.1). 

We have systematically explored the supercooled fluid phase of the equimolar 
mixture over the coupling range 1.3 s r 6 1.5, by constant-temperature MD simulations 
of samples of N = 432 atoms in a dodecahedral cell with periodic boundary conditions, 
using the standard Verlet algorithm [26] with a time step of typically At* = At/z = 0.012. 
In contrast to much of the eariier work, the sample was generally quenched by gradual 
compression, rather than by rapid cooling. A few test runs using the latter procedure 
showed no significant differences in the behaviour of the quenched samples for identical 
final values of r. The successive states of two independent quenching histories are 
summarised in table 1. Two successive compressions were typically separated by lo5 
time steps for equilibration, and averages were taken over at least 5 X lo4 time steps. If 
the potential parameters E and u1 are given values typical e.g. of argon, the resulting 
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Table 1. Two cooling histories near the glass transition. Teq = time for equilibration after the 
initial compression (in units of z). T,,, = time during which the system is followed in phase 
space after equilibration (in units of z). Each initial configuration is obtained on rescaling 
the particle coordinates of the last configuration of the preceding run in the list, unless 
otherwise stated. 

a1 
a2 
a3 
a4 
a5 

b l  
b2 
b3 
b4 
b5 

1.42 
1.44 
1.46 
1.48 
1.50 

1.42 
1.43 
1.44 
1.45 
1.455 

500 
600 
600 

1200 
1440 

120 
600 
600 

1200 
1800 

500 
600 
600 
600 
600 

360 (from al)  
600 
120 
600 
600 

equivalent cooling rate would be of the order of lo9 K s-’, which is comparable to those 
achieved by the fastest experimental techniques, and considerably less than the ultra- 
high cooling rates generally reported for ‘computer glass’. Positions and velocities of all 
particles were recorded on discs every five time steps to allow subsequent computation 
of static and time-dependent correlation functions, which serve as diagnostics for the 
glass transition. 

3. Static diagnostics 

The three partial pair distribution functions g,@(r) and the corresponding static structure 
factors S,@(k) are readily calculated by averaging over MD-generated configurations. 
They behave very much as already observed for the same model with the larger ratio 
az/al = 1.4 [17]. In particular they vary quite smoothly over the range of r-values 
investigated, they are perfectly reproducible, i.e. do not depend on the quench history, 
and they are independent of the mass ratio m2/m1; the latter ergodicity property is 
rigorously true only for equilibrium states, but our MD results suggest that it remains 
well verified for quenched (metastable) states. The gep(r) allow a direct calculation of 
the first derivatives of the free energy, i.e. the pressure P and the internal energy U .  
Since derivatives with respect to density and temperature are equivalent in the present 
soft-sphere model, the excess pressure and internal energy are directly proportional to 
each other. As already observed for the corresponding one-component system [23], and 
for the mixture with 02/a1 = 1.4 [17], the dimensionless equation of state 

Z = PV/NkBT 

is, to an excellent approximation, a linear function of r4 (i.e. of l /Tfor a fixed density). 
As in [ 171, we have also determined the pair structure and 2 from a thermodynamically 
self-consistent integral equation due to Rogers and Young (RY) [27], which is known to 
be very accurate for inverse-power potentials. The MD and RY results for the equation 
of state agree within the error bars of the former data, up to r = 1.45, but for larger 
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couplings (i.e. lower temperatures) the RY data drop significantly below the MD results 
[19]. This ‘bifurcation’ was interpreted in [17] as a first indication of the glass transition, 
under the assumption that the integral equation describes the fully relaxed supercooled 
liquid state, while the MD data correspond to quenched glassy states that do not have 
time to relax to the lowest free energy state over the observation time interval, which 
remains very short in view of the rapidly increasing structural relaxation time. This view 
is consistent with the fact that the free energy, calculated by integrating the equation of 
state, is lower for the RY than for the MD results. 

The isothermal bulk modulus (or inverse compressibility) B ,  can be calculated from 
a numerical differentiation of the equation of state or directly from the appropriate 
combination of the isothermal elastic constants ( B ,  = (Cll + 2C12 + P ) / 3 ) ,  which are 
given by standard fluctuation formulae involving pair, three- and four-point correlation 
functions [19]. The MD data, which are affected by about 5% error bars, vary smoothly 
with r and bifurcate from the corresponding integral-equation results around r = 1.45 
[19]. The MD data show no sign of any discontinuity or rapid variation in the vicinity of 
this smooth bifurcation. The same is hence true of the constant-volume specific heat, 
C,, which is directly related to the bulk modulus in the present soft-sphere model. 
Similarly C,, which is related to C, by a standard thermodynamic formula, appears to 
vary smoothly across the transition. This behaviour, which contrasts with the rounded 
specific heat jumps observed for many laboratory glass formers, is probably charac- 
teristic of the soft-sphere model where atoms interact only with their closest neighbours 
due to the short range of the pair potential. In particular, the absence of an attractive 
tail prevents the potential from probing the subtle structural rearrangements occurring 
on intermediate distance scales. 

We have finally computed the shear modulus 

G = C44 - P = (Cl1 - C12 - 2P)/2 

in an isotropic solid like a glass. The MD results have been presented in a preliminary 
note [19]; they show that G vanishes, within statistical errors, around r = 1.45. In the 
glass (I‘ 2 1.45) G turns out to be significantly smaller than in a polycrystalline sample 
under the same density-temperature conditions. 

It should be stressed that the ‘static’ quantities computed here are characteristic of 
the glassy states for frequencies of the order of the inverse observation time (typically 
lo9 Hz). For much lower frequencies (i.e. for macroscopic observation times), these 
properties may gradually change and tend towards their metastable ‘liquid’ values. In 
particular, for very long observation times, G may decrease towards zero, even for 
r 1.45, since the response of the supercooled mixture is expected to cross over from 
elastic to viscous (with very large values of the shear viscosity q). 

4. Single-particle motion 

In its simplest version, in which the memory kernel includes the non-linear feedback 
from density fluctuations only, mode-coupling theory predicts that the self-diffusion 
constants vanish according to a critical power law, at the temperature To of the ‘ideal’ 
glass transition. This power law is compatible with the results of earlier MD simulations 
of binary soft-sphere mixtures, with a ‘critical exponent’ that turns out to be the same 
for both species, and has a value close to 2 [17]. However, these same MD simulations 
clearly show that, in the immediate vicinity of To,  jump diffusion, related to activated 
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processes, takes over, so that D1 and D z  deviate more and more from a power law and 
do not vanish at the glass transition. Jump diffusion processes have been investigated in 
more detail [16], but since they are very rare events, the resulting diffusion constants D 1  
and Dz are very small (typically two orders of magnitude smaller than in the stable liquid 
near the freezing point) and not reproducible in different runs, in the immediate vicinity 
of the glass transition. 

The present simulations, carried out for the size ratio az/al = 1.2, very much confirm 
the above observations. For r z- 1.44, the slope of the mean-square displacement of 
atomsof one species( I.'")(t) - d")(O) lZ)changes with time t ,  so that the resulting apparent 
diffusion constant D, (a = 1,2)  is not well defined; the uncertainty is typically as large 
as a factor of 2. Reliable and reproducible results for the D, (with statistical errors of 
10% or less) are observed only at higher temperatures in the supercooled liquid range 
(typically for r s 1.42). These results fall on two parallel straight lines in a plot of 
In D: versus h ( T o  - r), where 

D: = D,~G:(T*) -~ / ' *  

is the reduced diffusion constant of species a, which depends only on the state variables 
r andxl [17]; the best straight-line fits are obtainedfor To = 1.5 and a slope (i.e. a critical 
exponent) v --- 2. 

In order to obtain a clearer and more quantitative picture of the space and time 
dependences of single-particle motion we have computed the self-parts of the density 
autocorrelation (or Van Hove) functions, namely 

Ne 

GP(~, t> = ( W m )  2 (S(ri(t) - ri(O) - (4) 
i =  1 

where rim)(t) denotes the position of particle i of species a at time t. In the stable or 
moderately supercooled liquid, the GP) are expected to go over rapidly to their hydro- 
dynamic limit fort 2> z, i.e. 

0 1 2 0 1 2 
r / a ,  r / a ,  

Figure 1. rZGi(r ,  t) versus x = r/ul at r = 1.42 
(andm2/ml = 2).  Thefullcurvesfromleft toright 
correspond to times t* = t / t  = 50, 100, 150 and 
200. The crosses represent the hydrodynamic 
result ( 5 )  for t* = 200, calculated with the 
measured value of D1. 

Figure 2. Same as in figure 1, but for r = 1.45 and 
t* = 46,92,229 and 458. 
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1 ' '  " I ' '  " " " " ' i  
3 

0 0.5 1.0 1.5 0 
r / u ,  r i a ,  

Figure 3. Same as in figure 1, but for r = 1.46 and 
t* = 108 (full curve), 216 (dotted curve) and 324 
(broken curve). 

Figure 4. Same as in figure 1, but for r = 1.48 
and r* = 120 (full curve), 240 (dotted curve), 360 
(broken curve) and 480 (chain curve). 

The mean-square displacement of an atom after a time tis equal to the second moment 
of G$OC)(r, t ) ,  i.e. 

(6) 

The integrand r2GP)(r,  t) has amaximum (at r e )  = 4D,tin the hydrodynamiclimit (5)) 
that moves more and more slowly to larger r as the diffusion constant drops with 
increasingr. In a completely frozen structure (i.e. in a low-temperature crystal or glass), 
the maximum of r2Gs(r, t) stabilises, after a time of the order of the inverse Einstein 
frequency zE = l/QE, at a fixed value determined by the Debye-Waller factor, i.e. 
r e )  = 2(~2,) ,  where U, denotes the thermal deviation of an atom of species a from its 
equilibrium position. 

We have investigated the behaviour of Gga)(r, t) in the supercooled liquid, as the 
glass transition is approached. Representative MD results for r2 GB')(r, t )  at different 
couplings are shown in figures 1-4. In each figure r2Gi1)(r,  t )  is plotted versus r for three 
or four different time arguments. At the highest temperature (r = 1.42), the peak in 
r2Gg1)(r, t )  is seen to move reasonably fast to larger r and the hydrodynamic limit (5) is 
reproduced rather accurately after t* = t/z = 200. Deeper in the supercooled liquid 
(r = 1.45), the behaviour is qualitatively still the same, although the single-particle 
motion has by now slowed down significantly, and the hydrodynamic limit is not yet 
fully reached after the longest time accessible in the simulation (here t / z  = 450). An 
unmistakable qualitative change appears, however, at the slightly stronger coupling r = 
1.46 (cf figure 3). The position of the main peak in r2Gs(r, t) is now independent of 
time, even for the longest times investigated, while its amplitude and its area decrease 
gradually with time. Since GP)(r ,  f) is normalised to unity at all times, the 'missing 
intensity' reappears as a tail at larger r ,  which extends to distances of the order of the 
mean inter-atomic spacing; the 'intensity' of this tail gradually increases with time, thus 
compensating the losses under the first peak. These features are reproducible, although 
the detailed shape of the tail at large r differs somewhat from run to run. The behaviour 
at the slightly stronger coupling (r = 1.48) is very similar (cf. figure 4). 

The physical interpretation of the qualitative changes in G$")(r, t) is quite trans- 
parent. For < 1.46, diffusion is not unlike that observed in liquids, except for a gradual 
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2 

- 
c 
L- 
1 

$ 
5 c 1  

0 1 2 IO+ 10-2 lo-' 1 
r / o l  Dl + 

Figure 5. A test of time scaling; r2Gf(r, t )  is plot- 
ted versus r/a, at r = 1.43 (full curve) and r = 
1.45 (crosses) for t* = nt; ( n  = 1 ,2 ,3 ) ,  where 
thetimeintervalst,* = 16.3(forT = 1.43)and23 
(for r = 1.45) are taken in the ratio of the 
measured self-diffusion coefficients D,( r ) .  

Figure 6 .  The self-intermediate scattering func- 
tion Ff(k, t)  plotted versus In(DT;t*) for k = k o  
(positionofthemain peakinthenumber structure 
factor Snn(k)). Open squares, r = 1.4; open tri- 
angles,r = 1.42;stars,r = 1.44;fullsquares,r = 
1.46; full triangles, = 1.48. The full curve is a 
Kohlrausch 'master curve' A exp(-sfi) fitted to 
the data at the three lower r values; the fit yields 
A = 0.75 and /3 = 0.62. 

slowing down; the hydrodynamic diffusion limit (5) is reached only after increasingly 
long time intervals. All atoms diffuse and single-particle motion is intimately related to 
the gradual break-up of the local structure, as will become apparent in the following 
section. A comparison between the results for = 1.43 a n d r  = 1.45 displayedin figure 5 
shows that Gg")(r, t )  approximately scales with D,t/oT, well before the hydrodynamic 
limit ( 5 )  is reached (where this scaling property is of course exact). For r 3 1.46 the 
main peak in r2G$")(r, t )  appears at a position that is independent of time, even for the 
longest time intervals explored in our MD runs; this points to a frozen, disordered 
structure where most atoms vibrate around fixed equilibrium positions. The quenched 
disordered structure exhibits many defects (vacancies, interstitials) compared to a reg- 
ular crystalline stucture, and relaxes very slowly (on a timescale much longer than the 

s typically explored by MD runs) via activated processes, like individual or correlated 
jumps [16]. These rare processes give rise to the large-r tail in r2GB")(r, t ) ,  which builds 
up very gradually, at the expense of the area under the frozen main peak. The position 
of the latter allows an unambiguous determination of the 'Lindemann ratio' L ,  = 
( (u:) /d2)l l2 ,  where d denotes the mean inter-particle spacing [6], as determined e.g. 

from the position of the first peak in the total pair distribution function. A few typical 
MD results are listed in table 2. At the glass transition (r = 1.46), the Lindemann ratios 
are comparable to their values in a crystalline solid near melting. 

The incoherent part of the inelastic neutron scattering cross section is directly related 
to the self-intermediate scattering functions Fg")(k, t ) ,  which are the spatial Fourier 
transforms of the G$@)(r, t): 

Ne 

~ g " ) ( k ,  t )  = (I/") (exp{ik. [r$e)(t)  - r $ a ) ( ~ ) ] } ) .  (7) 
i =  1 

The signature of an 'ideal' glass transition, where activated processes are neglected, is 
the discontinuous change in behaviour of F$@)(k ,  t )  from ergodic before the transition 
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Table 2. Measured values of Lindemann ratios. I,(")= (u:)'l2/d for species a, where U, is the 
displacement of a particle from its equilibrium position and d is the average distance between 
two nearest neighbours. We have conventionally chosen ford the position of the first peak 
of gnn(r), the total density autocorrelation function. With this definition, L(') and appear 
to be equal within the accuracy of the measurements. 

Glass 1.46 0.19 
Glass 1.48 0.17 
Glass 1.50 0.15 

CsCl crystal 1.46 0.14 

(r < r,) to non-ergodic in the glass (r > r,) ('structural arrest'); in the latter case 
F p )  ( k ,  t )  tends to a k-dependent non-zero limit (the so-called Edwards-Anderson order 
parameters [28]) as t+ W .  Such a behaviour has indeed been confirmed by neutron 
scattering experiments [ l ,  21 and by MD simulations [14,15], at least in the time windows 
explored by these probes of microscopic dynamics. However, activated processes will 
restore ergodicity after much longer times, so that F;")(k, t )  is expected to decay ulti- 
mately to zero, even for r > To. 

MD results for Fi l ) (k ,  t )  are plotted in figure 6 versus the scaled time D,t, for a 
wavenumber close to ko,  the position of the main peak in the static structure factor, 
and for five different values of the coupling r. The results for the three states in the 
supercooled liquid, above the glass transition, fall practically on a unique master curve. 
In the immediate vicinity of the glass transition (r = 1.46), the MD results for Fg")(k, t )  
from different runs are less reproducible and the estimates of the diffusion constants D, 
are more uncertain. Nevertheless we believe the deviations from the master curve 
observed beyond the glass transition (r = 1.46 and 1.48) to be significant, again in 
agreement with mode-coupling theory, which predicts a scaling regime for a-relaxation 
above the transition, but not below, since the system is then supposed never to attain a 
fully relaxed equilibrium state [12, 131. 

5. Relaxation of the pair structure 

The static pair structure of a binary mixture is described by the three partial distribution 
functionsgcp(r), and the gradual break-up of the initial structure is characterised by their 
time-dependent generalisations, i.e. the 'distinct' parts of the density autocorrelation (or 
Van Hove) functions, namely 

N u  Ng 

G(dnp)(r, t )  = (l /N,NB)'/ '  2 (6(r - rf"'(0) + rjP)(t)) (8) 
r=l  j = l  

where the prime means that the self-term i = j is to be left out if a = p. In the stable or 
slightly supercooled liquid, the initial structure decays rapidly and the G$"p)(r, t )  reach 
their uniform limit of unity after typically 10 Einstein periods l/QE - z. This 'structural 
relaxation' slows down dramatically, however, as the temperature is lowered towards 
the glass transition. An illustration of the phenomenon is provided by figures 7-9, which 
show one of the three G&@')(r, t )  as a function of the reduced distance x = r/ol, for 
several values of the reduced time argument t* = t / s ,  and for increasing values of the 
coupling r. At r = 1.44, figure 7, the relaxation is nearly complete after t* = 200. The 
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3 

- 
i 

' 2  
d 

1 

Figure 7. GA'(r, t) plotted versus r/al at r = 1.44 
and t* = 0,60,120 and 240. 

1 2 3 
r / o l  

behaviour is qualitatively different at r = 1.46 (figures 8(a) and (b ) ) .  After an initial 
rapid decay, GYP)(,, t )  appears to be practically stabilised over the time interval 
20 s t* s 100. However, upon further increasing t*, G$nP)(r, t )  resumes its decay, 
although this second stage of relaxation is much slower; even after t* = 480, a con- 
siderable amount of structure remains. Evidently we are in the presence of a two-stage 
process. In the corresponding intermediate scattering function 

~'d"P'(k t )  = ( ~ " P P ~ ( t ) P ~ m ) )  (9) 

3 

1 

2 

- 
c. 
L' 
I 

on 1 

Figure 8. G$'(r, t) plottedversus r/al at r = 1.46 
0 1 2 3 and fort* = 0,18 ,36 ,54 ,72  (a) and t* = 72,240, 

r / o ,  480 ( b ) .  
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calculated for a wavenumber k corresponding roughly to the period observed in 
r-space (i.e. to the position of the first peak in the static structure factor S ( k )  = "B F$"B)(k, t = 0 ) ) ,  the initial and final structural decay are separated by a nearly horizontal 
plateau. This is qualitatively similar to the behaviour observed for the self-parts of the 
density autocorrelation functions (cf. figure 6), and to the results of inelastic neutron 
scattering experiments [I]. For still stronger coupling (r = 1.48), the second relaxation 
stage is not observed any more, at least over the time interval covered by our MD 
simulations (t* S 500); in other words, the initial structure g,@(r) appears to decay 
towards a 'frozen' (time-independent) structure, rather than towards unity (figure 9). 
This is qualitatively similar to what is observed in the CsCl crystal phase of the same 
model, although the pair structure is very different in that case. 

3 F 
t I 1  

0 1 2 3 A 

t 

1 

t -.. 
U -1 I I 8 1 , 1 8 I 1 8 1 1  4 , , , , , , , , 

0 100 200 300 400 500 
t *  

Figure 9. Gi*(r, t )  plotted versus r/u2 at r = 1.48 
for t* = 0 and t* = 240 (full curves) and t* = 480 
(crosses). 

Figure 10. j"(t), as in formula (13), versus t * ,  for 
= 1.46 and m2/m1 = 10, taking to* = 18 and 

t? = 120. For each t*, eight points are shown, 
corresponding ton = 1 to 8. Inserted is a detail of 
the same plot that shows the breakdown of the 
factorisation amatz (10) for longer times. 

As is clearly evident from all the cases shown in the figures, the amplitudes of the 
successive maxima and minima decrease with time, but their positions, as well as those 
of the nodes of GPpI ( r ,  t )  - 1, do not change with time. This suggests a factorisation of 
the type predicted by mode-coupling theory in the P-relaxation regime [7]: 

Gd(T, t )  = G&O)(r) + H(rlf(4 (10) 

where we have left out the species pair indices CUP. In order to test the ansatz (lo), we 
have computed the 'scalar products' 

an(t> = 1'''' r 2 [ G d ( r ,  t )  - l ] [ g ( r )  - 11 d r  
' n  

where the rn are the positions of successive nodes of gwp(r)  - 1. These scalar products 
yield a measure of the rate at which the initial structure decays over a range of inter- 
atomic distances corresponding to successive shells of neighbours. Substitution of the 
ansatz (10) into ( 1 1 )  would yield for these scalar products the generic form 

art(t> = a n  + Pnf(t)* (12) 
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Below the ideal glass transition temperature, the a, are a measure of the 'frozen' 
structure, while f(t) describes the p-relaxation. If to denotes some initial time charac- 
teristicof the short-time behaviour (Einstein regime) and tl  a time corresponding roughly 
to the end of the P-relaxation regime, the relaxation functionf(t) is determined by the 
ratio 

where it is assumed that f ( t l )  = 0. Results for the scalar products (11) at r = 1.46 and 
for the mass ratio mz/ml = 10, plotted according to equation (13) as functions of t for 
several n ,  are shown in figure 10. The factorisation assumption is seen to be poor at very 
short times, but reasonable in the expected P-relaxation regime (20 s t* G 100); at 
longer times the ratios (13) exhibit further decay, which may be associated with a- 
relaxation or residual activated processes. Overall, the factorisation ansatz (10) turns 
out to be a reasonable assumption only at intermediate times, which may correspond to 
P-relaxation. 

6. Long-wavelength collective modes 

Structural relaxation is most conveniently explored for wavelengths of the order of the 
inter-particle spacing, i.e. for wavenumbers k = ko,  which correspond to maximum 
intensity of scattered radiation. At  such short wavelengths, the density autocorrelation 
functions are dominated by single-particle motion, whereas collective modes are com- 
pletely damped. At longer wavelengths ( k  < k,,), the density autocorrelation functions 
decay more and more slowly [ 151, since the characteristic relaxation time scales roughly 
like (Dk2>- ' ,  but the influence of the longitudinal collective modes is expected to be 
superimposed on the slow structural relaxation. We have investigated the behaviour of 
longitudinal modes in the vicinity of the glass transition, by computing the mass density 
autocorrelation function 

F(")(k, t )  = (l/N)(pLm)(t)p(_"k)(0)) (14) 

is the microscopic mass density, and p = xlml + x2m2 is the mean mass. In liquid 
mixtures, the hydrodynamic limit of gm)(k, t )  is governed by coupled inter-diffusion and 
heat diffusion modes and by the propagating sound mode [29]. The MD results for 
f l m ) ( k ,  t )  at r = 1.42 are plotted versus time in figure 11, for the smallest wavenumber, 
k , ,  compatible with the periodic boundary conditions, and for k2 = 2kl.  It should be 
stressed that, while the mass structure factor S(")(k) = Fm(k,  t = 0)  is subject to large 
statistical uncertainties for a given k ,  the difference g")(k, t )  - F(")(k, t = 0) turns out 
to be much better defined and easily reproducible. The two curves displayed in figure 
11 exhibit moderately damped oscillations with a slowly decaying envelope characteristic 
of well defined sound waves that propagate through a nearly frozen structure. The period 
and amplitude ratios of the oscillations determine the sound velocity and damping. 
Alternatively these may be determined from the position and width of the Brillouin 
peaks appearing in the mass fluctuation spectrum S(")(k, U ) ,  which is the Fourier 
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Figure 11. Fm)(k,  t )  - Fm)(k,  0) versus t* at r = 

1.42, fork = k l  (full curve) and k = 2kl (broken 
curve). 

Figure 12. Ct("')(k, t )  versus t* fork = k l ,  and for, 
from right to left, r = 1.3, 1.38 and 1.455. The 
latter result has in fact been obtained for a mass 
ratiom2/m, = 10, but thecorresponding time axis 
has been rescaled by the square root of the ratio 
of the total masses, d(3/11). 

transform of fl")(k,  t). There is some ambiguity in determining S(")(k, w )  from the MD 
data for fl")(k,  t ) ,  because of the very slow decay of the latter, which leads to a very 
sharp quasi-elastic peak in the frequency spectrum. Sound velocities and damping 
constants determined for several couplings r are listed in table 3. In the supercooled 
fluid (r < ro), the sound velocity c, is determined by the adiabatic bulk modulus 

B ,  = P W / d P ) S  = P Y ( d P / d P ) T  

cs = (B,/PP)"*.  

(where y = C,/C, is the specific heat ratio), according to 

The isothermal sound velocities cT, which differ from c, by a factor y ,  have been 
calculated directly from the isothermal compressibilities and are also listed in table 3. 

Table 3. Sound velocity c and sound absorption coefficient A :  A is estimated as the width at 
half-height of the sound peak of S("')(kl,  U ) ;  c1 and c2 (in units of a l / t )  are respectively the 
sound velocity deduced from the position of the peak and the isothermal velocity calculated 
from the measured elastic constants. 

r AT C1 c2 

1.0 2.9 6.3 5.66 
1.2 2.8 8.6 7.46 
1.3 3.8 9.8 8.47 
1.35 3.4 10.7 8.91 
1.38 3.8 10.6 9.31 
1.41 3.3 11.1 9.70 
1.43 3.2 11.9 9.93 
1.45 3.5 12.1 10.26 
1.48 3.6 12.3 10.68 
1.50 3.5 12.6 11.04 
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Since y is estimated to fall in the range 1-1.1 for the states considered here, the values 
for cT and c,, respectively determined from the equation of state and from the position 
of the Brillouin peak, are clearly compatible. In the glass (r > ro), the sound velocity is 
related to the adiabatic bulk and shear moduli B, and G, by 

c, = [(Bs + ~ G , / ~ ) / P P I ' ~ * .  
Near the transition, G, is small compared to B, [19] so that c, is essentially determined 
by B, as in the supercooled liquid. 

The most important conclusion to be drawn from inspection of table 3 is that the 
sound attenuation (defined as the imaginary part of the complex sound frequency) is 
practically constant over the range of coupling constants investigated (1 G r s l S ) ,  for 
the smallest wavenumber k l ;  since the sample was gradually compressed to increase r, 
the reduced wavenumber klal  increases slightly (according to the one-third power of 
r). In the stable fluid phase, sound attenuation is determined by viscosity, thermal 
conductivity and inter-diffusion [30], the viscous damping mechanism being generally 
the most efficient. The standard expression for the sound attenuation coefficient, derived 
from the linearised Navier-Stokes equations, would predict a dramatic increase of sound 
damping with decreasing temperature, since the viscosity increases sharply as the glass 
transition is approached. However the predictions of hydrodynamics are valid only for 
frequencies w less than the characteristic frequency wo = c1/(4v/3 + v'), where v and 
v' denote the kinematic shear and bulk viscosities [29]. The value of wo may be estimated 
from the viscosities calculated by Heyes [31] for a one-component soft-sphere fluid, via 
the conformal solution ansatz (3) .  Above the freezing temperature (r S 1.2), w o  is 
significantly larger than the acoustic frequency w1 = c,kl corresponding to the smallest 
wavenumber k l ,  so that the hydrodynamic expression for the sound attenuation coef- 
ficient should be applicable. However, as the viscosity increases rapidly in the super- 
cooled liquid, on approaching the glass transition, the hydrodynamic frequency range 
shrinks to zero, so that the condition w1 = c,kl wo is no longer satisfied. For fre- 
quencies w > wo the medium behaves elastically, and sound attenuation is dominated 
by anharmonic effects similar to the damping mechanisms in crystalline solids. The 
important observation made here is that the cross-over from viscous ( fluid-like) damping 
to anharmonic (solid-like) damping of sound waves at a given wavelength occurs very 
smoothly, since it is characterised by a nearly constant value of the sound absorption 
coefficient, A detailed theoretical analysis of the damping of sound in the vicinity of the 
glass transition, incorporating the effects of slow structural relaxation, remains to be 
done. 

We have also computed the transverse mass current autocorrelation function 

C(t")(k, t )  = (l/NkZ)([k x j p ( t > ]  * [k  Xj(_mk)(O)]) 

wherejim) ( t )  is the microscopic mass current 
N 

jim)(t) = miui( t )  exp[ik. ri ( t )] .  
i = l  

Examples of C{")(k,  t ) ,  computed for the smallest wavenumber k = kl ,  are shown in 
figure 12. The correlation function exhibits oscillations, characteristic of a propagating 
shear mode, which are more and more pronounced as the coupling increases. This 
viscoelastic behaviour is observed only for significantly shorter wavelengths, of the order 
of the inter-atomic spacing, in the stable liquid phase [30]. This qualitative difference 
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between the behaviour in the stable and supercooled liquid phases agrees with a simple 
viscoelastic analysis, which predicts that shear waves will appear for wavenumbers k 
larger than a critical wavenumber k, - 1/11 [30]. In the vicinity of the glass transition k, 
becomes much smaller than the minimum wavenumber k l  compatible with the size of 
the simulation cell, thus allowing the propagation of a well defined shear mode similar 
to transverse phonons in solids. The frequency of the observed shear mode turns out to 
be less than half the frequency of the longitudinal sound mode at the same wavelength. 

7. Conclusions 

In order to characterise the structural slowing down in the vicinity of the glass transition 
of a simple binary alloy, we have examined the relaxation of the coherent and incoherent 
parts of the density autocorrelation functions both in r- and in k-space. We have found 
that the statistical uncertainties are considerably smaller for the r-space Van Hove 
functions than for the k-space intermediate scattering functions, a situation familiar 
from molecular dynamics or Monte Carlo simulations of the static equivalents, i.e. the 
pair distribution functions and the structure factors. This reduction of the statistical 
uncertainties combined with improved reproducibility of the computed correlation 
functions, due to very careful quenches of the samples, allows us to formulate well 
defined diagnostics of a sharp glass transition. 

The first diagnostic concerns the self Van Hove functions G;")(r, t) .  The peak in 
r2Gp) ( r ,  t )  decays differently above and below the transition temperature. For r < To 
(= 1.46 in the case under investigation), the peak broadens and moves to larger r with 
increasing time; while for r > To, the peak position is frozen, i.e. the peak decays 
without moving to longer times. The self-diffusion constants do not go strictly to zero, 
however, and activated 'hopping' processes give rise to a 'tail' in GP) at larger distances. 

The second diagnostic is related to the distinct Van Hove functions G$"B)(r, t) .  While 
for r < r0, these correlation functions decay rather rapidly and continuously to their 
asymptotic value of unity, their relaxation becomes a much slower two-step process 
above To: after an initial decay (which may be identified with /?-relaxation), the functions 
are practically constant over a time interval that expands as r increases. Only in the 
immediate vicinity of the glass transition is it possible to observe the subsequent a- 
relaxation within the duration of the present MD simulations. It is interesting to note that 
during the initial relaxation of the G$ng)(r, t ) ,  the amplitudes of only the first two peaks 
decay with time, whereas the subsequent peaks appear to be unaffected, in qualitative 
agreement with a recent mode-coupling calculation for the glass transition of the hard- 
sphere system [32]. 

Both diagnostics lead to the same estimate of the glass transition parameter To. A 
series of runs carried out for the mass ratio m2/m1 = 10 show a behaviour very similar 
to that observed for m2/m1 = 2, and lead to a practically identical estimate of To (r, = 
1.47 instead of 1.46). Note, however, that equilibration in the vicinity of the glass 
transition appears to be significantly slower for the system with the larger mass ratio. 

Overall the results of the present simulations are compatible with the glass transition 
scenario suggested by the more elaborate versions of mode-coupling theory, but the 
statistical uncertainties prevent a fully quantitative test of the various scaling regimes 
predicted by this theory. 
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